PEARSロN ENGINEERING

Farsight Homes Residential Subdivision
 Township of Adjala-Tosorontio

Traffic Impact Study for

Far Sight Investments Limited

Type of Document:
Final Report

Project Number:
JDE - 1531
Date Submitted:
April $26^{\text {th }}, 2016$
Revised: November $1^{\text {st }}, 2016$
Updated: April $28^{\text {th }}, 2021$

Gary Pearson, P.Eng.
Professional License \#: 100061986

John Northcote, P.Eng.
Professional License \#: 100124071

Legal Notification

This report was prepared by JD Northcote Engineering Inc. for the account of Far Sight Investments Limited.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. JD Northcote Engineering Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This report summarizes the traffic impact study prepared for the proposed development located between County Road 13 and Concession Road 6, North of Moore Ave and Columbus Lane, in the community of Everett, Township of Adjala-Tosorontio [Township], County of Simcoe [County]. The report assesses the impact of traffic related to the development on the adjacent roadways and provides recommendations to accommodate this traffic in a safe and efficient manner.

The subject site consists of a 54.4 hectare parcel of land. The proposed development will consist of 666 single detached residential units and a 1.67 hectare commercial block (specifics not known at this time).

A large parcel of land, north of the subject site [Barzo property], is expected to be developed within roughly the same time period as the subject site. For the purpose of this report, it is anticipated that this property will include 1,238 residential lots including 415 townhouse and 823 single detached units.

The subject site will have one full-movement access onto County Road 13 at the west end of the site via Street C and a second full-movement access onto the planned future extension of Concession Road 6 at the east end of the site via Street C. There is one proposed connection into the existing development to the south via a connection to Pine Park Boulevard from Street B. Proposed future connections to the Barzo property are planned via Street E, Street J and Street P.

Based on the proximity and size of the Barzo property, our analysis includes the impact of the traffic generated by the Barzo property on the local road network.

The scope of this analysis includes a review of the existing intersection of County Road 5 / County Road 13, County Road 5 / Concession Road 6 as well the future intersections of Concession Road 6 / Street C and County Road 13 / Street C.

Conclusions

1. The proposed development is expected to generate a total of 514 AM and 687 PM peak hour trips.
2. Background traffic counts were commissioned by JD Engineering at the intersection of County Road 5 / Concession Road 6 and on County Road 13 at the proposed location of Street C on Thursday April 7, 2016. JD Engineering also obtained traffic counts completed by the County from Thursday July 9, 2015 at the intersection of County Road 5 / County Road 13.
3. The background traffic growth rate for the study area has been based on review of historic AADT data from the study area, provided by the County.
4. An intersection operation analysis was completed at the existing intersections in the study area, using the existing (2016) and background (2031 and 2036) traffic volumes without the proposed development. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. No improvements were warranted for the existing (2016) and background (2031 and 2036) scenarios.
5. It is anticipated that the planned extension of Concession Road 6 , up to Street C will occur prior to 2031.

PEARSON ENGINEERING LTD.

B7 - 48 Alliance Blvd., Barrie ON L4M 5K3
www.pearsoneng.com

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca
6. An estimate of the amount of traffic that would be generated by the proposed development was calculated and assigned to the study area streets and intersections. It is assumed that the proposed development will be completely built-out and occupied by 2031.
7. An estimate of the amount of traffic that would be generated by the Barzo property was also calculated and assigned to the study area streets and intersections. It is assumed that the Barzo property will be completely built-out and occupied by 2031.
8. An intersection operation analysis was completed for the study area using the total (2031 and 2036) traffic volumes with the traffic generated by the proposed development and Barzo property. The following improvements are recommended:

2031 Horizon Year

- County Road 5 / County Road 13 - add eastbound and westbound stop control to form an all-way stop control intersection ${ }^{1}$.
- County Road 13 / Street C - add a 60 metre northbound right-turn taper. It is recommended that the right-turn taper is constructed in conjunction with the proposed intersection of County Road 13 / Street C.
- County Road 13 / Street C - add a southbound left turn lane (15 metre storage length). The warrant for the construction of the southbound left turn lane will depend on the development schedule; however, the southbound left turn lane is not warranted as a result of the traffic generation from the full build-out of the subject site alone.
- County Road 5 / Concession Road 6 - add a 60 metre westbound right-turn taper. It is recommended that the right-turn taper is constructed prior to occupancy of 35% of the development within the subject site and Barzo property (approximately 583 units).

9. The recommended configuration for the County Road 13 / Street C intersection is fullmovement with one-way stop control for westbound egress movements from the subject site.
10. The existing 90 degree corner where Columbus Lane intersects with Pine Park Boulevard will become a t-intersection as a result of the proposed Street B connection. It is recommended that the proposed t-intersection is unsignalized with one-way stop control for the eastbound (Columbus Lane) approach.
11. In summary, with the above-noted infrastructure improvements, the proposed development will not add significant delay or congestion to the local roadway network.
[^0]
Table of Contents

1 Introduction. 1
1.1 Background1
1.2 Study Area 1
1.3 Study Scope and Objectives 2
1.4 Horizon Year and Analysis Periods 3
2 Information Gathering 3
2.1 Street and Intersection Characteristics 3
2.2 Transit Access 4
2.3 Other Developments within the Study Area 4
2.4 Local Transportation Infrastructure Improvements 5
2.5 Traffic Counts 5
2.6 Horizon Year Traffic Volumes 6
2.7 Intersection Capacity Analysis Criteria 8
3 Intersection Operation Without Proposed Development 9
3.1 Introduction 9
3.2 Intersection Operation for Existing (2016) Traffic Volume 9
3.3 Intersection Operation for Background (2031) Traffic Volume 10
3.4 Intersection Operation for Background (2036) Traffic Volume 11
4 Proposed Development Traffic Generation and Assignment 12
4.1 Proposed Development Traffic Generation 12
4.2 Barzo Development Traffic Generation 13
4.3 Traffic Assignment 14
4.4 Total Horizon Year Traffic Volumes with the Proposed Development 16
5 Intersection Operation With Proposed Development 18
5.1 Intersection Operation for Total (2031) Traffic Volume 18
5.2 Intersection Operation for Total (2036) Traffic Volume 21
5.2.1 Sight Distance Analysis 19
5.2.2 Site Access 23
6 Summary 23

List of Tables

Table 1 - Traffic Count Data 5
Table 2 - Level of Service Criteria for Intersections 9
Table 3 - Intersection Operation for Existing (2016) Traffic Volumes 10
Table 4 - Intersection Operation for Background (2031) Traffic Volumes 11
Table 5 - Intersection Operation for Background (2036) Traffic Volumes 12
Table 6 - Estimated Traffic Generation of Proposed Development 13
Table 7 - Estimated Traffic Generation of Proposed Development 13
Table 8 - Site Traffic Distribution 14
Table 9 - Intersection Operation for Total (2031) Traffic Volumes 19
Table 10 - Intersection Operation for Total (2031) Traffic Volumes (with improvements) 21
Table 11 - Intersection Operation for Total (2036) Traffic Volumes 22
List of Figures
Figure 1 - Proposed Site Location and Study Area 2
Figure 2 - Existing Lane Configuration within the Study Area 4
Figure 3 - Existing (2016) Peak Hour Traffic Volumes 6
Figure 4 - Background (2031) Peak Hour Traffic Volumes 7
Figure 5 - Background (2036) Peak Hour Traffic Volumes 8
Figure 6 - Traffic Assignment for Subject Site 15
Figure 7 - Traffic Assignment for Barzo Property 16
Figure 8 - Total (2031) Peak Hour Traffic Volumes 17
Figure 9 - Total (2036) Peak Hour Traffic Volumes 18

List of Appendices

APPENDIX A - Plan of Subdivision (Farsight Homes) \& Preliminary Draft Plan (Barzo Lands)
APPENDIX B - Traffic Counts
APPENDIX C - Synchro Analysis Output - Existing Conditions
APPENDIX D - Synchro Analysis Output - Background Traffic Volumes
APPENDIX E - Synchro Analysis Output - Total Traffic Volumes
APPENDIX F - Traffic Impact Study Excerpts
APPENDIX G - Traffic Signal Warrant Sheets
APPENDIX H - MTO Left Turn Warrant Nomographs

1 Introduction

1.1 Background

Far Sight Investments Limited [the Developer] is proposing to develop a 54.4 hectare site located between County Road 13 and Concession Road 6, north of Moore Avenue and Columbus Lane, in the community of Everett, Township of Adjala-Tosorontio [Township], County of Simcoe [County]. The proposed development will consist of 666 single detached residential units and a 1.67 ha commercial block (specifics not known at this time).

Future residential development is anticipated for the Barzo property, which is located directly north of the subject site. It is expected that the Barzo property will be developed within roughly the same time period as the subject site. The latest Preliminary Site Plan by Pearson Engineering Ltd. (provided in Appendix A) indicates a unit count of 415 townhouse and 823 single detached lots for a total of 1,238 lots.

The subject site will have one full-movement access onto County Road 13 at the west end of the site via Street C and a second full-movement access onto Concession Road 6 (future) at the east end of the site via Street C . There is a proposed connection into the existing development to the south via a connection to Pine Park Boulevard from Street B. Proposed future connections to the Barzo property are planned via Street E, Street J and Street P.

The Developer has retained JD Northcote Engineering Inc. to prepare this traffic impact study in support of the Plan of Subdivision applications.

1.2 Study Area

Figure 1 illustrates the location of the subject site and the surrounding area. The proposed development plan of subdivision is shown in Appendix A.

Figure 1 - Proposed Site Location and Study Area

Based on consultation with the Township and County, the following intersections have been included in this Study:

- County Road 5 (Main Street Everett) / Concession Road 6;
- County Road 5 (Main Street Everett) / County Road 13; and
- County Road 13 / Street C.

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site access points and on the surrounding roadway network. The study analysis includes the following tasks:

- Consult with the Township and County to address any traffic-related issues or concerns they have with the proposed development;
- Determine existing traffic volumes and circulation patterns;

PEARSON ENGINEERING LTD.

B7 - 48 Alliance Blvd., Barrie ON L4M 5K3
www.pearsoneng.com

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

- Estimate future traffic volumes if the proposed development was not constructed, including the impact of additional proposed developments in the area;
- Complete intersection operation analysis of horizon year (without the proposed development) traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed development and assign to the roadway network;
- Complete intersection operation analysis of horizon year (with the proposed development) traffic conditions and identify additional operational deficiencies;
- Review site access characteristics and identify deficiencies;
- Identify improvement options to address operational deficiencies; and
- Document findings and recommendations in a final report.

1.4 Horizon Year and Analysis Periods

It has been assumed that, should all approvals be granted, the proposed development will be achieve full build out by 2031. The existing (2016) and 10-year (2026) horizon have been included in this study. An additional horizon analysis of the build-out year plus 5 years (2036) has also been included. The weekday morning [AM] and afternoon [PM] peak hour have been selected as the analysis periods for this study.

2 Information Gathering

2.1 Street and Intersection Characteristics

County Road 5 (Main Street Everett) is currently a two-lane secondary arterial road. County Road 5 has an urban cross-section with a sidewalk on both sides of the road within the community of Everett. Within the community of Everett, County Road 5 has a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$ and there is a community safety zone (fines increased). There are no posted on-street parking restrictions along County Road 5 near County Road 13.

At Concession Road 6, County Road 5 has a rural road cross-section and a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$. The community safety zone ends immediately west of Concession Road 6.

County Road 5 is under the jurisdiction of the County.
County Road 13 is currently a two-lane secondary arterial road. County Road 13 has an urban cross-section north of County Road 5, with a sidewalk on the west side of the road and a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$. South of County Road 5, County Road 13 has a rural cross-section, with a sidewalk on the east side of the road and a posted speed limit of $50 \mathrm{~km} / \mathrm{h}$.

There is a community safety zone (fines increased) on County Road 13, within the limits of the existing community of Everett.

North of the community of Everett (across the frontage of the subject site), County Road 13 is a twolane road with a rural cross-section and a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$.

County Road 13 is under the jurisdiction of the County.
Concession Road 6 south of County Road 5 is a two-lane local road with a posted speed limit of $60 \mathrm{~km} / \mathrm{h}$. Concession Road 6 has a rural cross-section.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

North of County Road 5, Concession Road 6 is a two-lane local road with a gravel surface and an unsigned (assumed) speed limit of $50 \mathrm{~km} / \mathrm{h}$.

Concession Road 6 is under the jurisdiction of the Township.
The existing lane configuration for key study area intersections can be seen in Figure 2.
Figure 2 - Existing Lane Configuration within the Study Area

2.2 Transit Access

There is currently no municipal transit service within the study area.

2.3 Other Developments within the Study Area

The Barzo property is a 96.6 hectare parcel of land, located north of the subject site. As per the latest Draft Plan of Subdivision by KRCMAR Surveyors Limited. (provided in Appendix A), the proposed development is expected to include 1,238 residential lots including 415 townhouse and 823 single detached units. Access to the site will be provide via the proposed Street E, Street J and Street P connections to the Farsight property. There will be no direct connection from the Barzo property onto County Road 13.

Other minor developments are proposed in the area; however, nothing that will have a notable impact on the study area traffic volumes. It is assumed that the background traffic growth rate noted in Section 2.5 will account for increases in the background traffic volumes as a result of these smaller

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca
infill developments. No specific traffic volume adjustments have been made within the study area for the other minor developments in the study area.

The traffic generation and distribution for the Barzo property is calculated in Section 4.2 and 4.3 respectively.

2.4 Local Transportation Infrastructure Improvements

Based on our discussions with the Township and County no lane- or road-capacity improvements are currently planned within the study area.

2.5 Traffic Counts

Detailed turning movement traffic and pedestrian counts were commissioned by JD Engineering at the existing intersection of County Road 5 / Concession Road 6. Automatic traffic recorder [ATR] counts were also commissioned by JD Engineering on County Road 13 near the proposed intersection with Street C. Traffic counts collected by the County at the intersection of County Road 5 / County Road 13 were also obtained by JD Engineering for use in this report.

The traffic count data has been included in Appendix B. Table 1 illustrates the count date and peak hour of traffic generation.

Table 1 - Traffic Count Data

Intersection (N-s Street / E-W Street)	Count Date	AM Peak Hour	PM Peak Hour	Source
County Road 13 / County Road 5	Thursday April 7, 2015	$07: 30-$ $08: 30$	$16: 15-$ $17: 15$	County
County Road 5 / Concession Road 6	Thursday			
April 7, 2016	$07: 30-$	$16: 45-$	JD Eng. ${ }^{*}$	
County Road 13	Thursday April 7, 2016	$08: 00-$ $09: 00-$	$17: 00-$ $18: 00-$	JD Eng. ${ }^{*}$

* Traffic counts were completed by Ontario Traffic Inc. on behalf of JD Engineering

The anticipated peak hour of traffic generated by the subject site generally aligns with the peak hour of traffic on the adjacent roads.

The peak hour factor has been calculated for the study area intersections, based on the 15 -minute traffic count data included in the detailed turning movement counts. These values have been incorporated in the Synchro analysis.

Heavy vehicle percentages and pedestrian crossings from the traffic count data have also been included in the Synchro analysis.

In order to convert the 2015 traffic count data from the County to an equivalent 2016 traffic volume, a background traffic growth rate of 1.0% / year was applied. Additional information on the calculation of the background traffic growth rate is provided in Section 2.6.

Figure 3 illustrates the existing (2016) AM and PM peak hour traffic volumes in the study area.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Figure 3 - Existing (2016) Peak Hour Traffic Volumes

2.6 Horizon Year Traffic Volumes

Based on our comparison of the historic AADT data provided by the County for the study area roads, there has been negligible background traffic growth in the area. In order to be conservative, we have applied a 1% / year background traffic growth rate for the purpose of this study.

No background traffic growth rate has been applied to Concession Road 6, north of County Road 5, as there are no planned developments (aside from the Farsight and Barzo properties) that will have a notable impact on the traffic volumes on this road.

Figures 4 and 5 illustrates the projected (2031 and 2036) AM and PM peak hour traffic volumes in the study area.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6 www.JDEngineering.ca

Figure 4 - Background (2031) Peak Hour Traffic Volumes

Figure 5 - Background (2036) Peak Hour Traffic Volumes

2.7 Intersection Capacity Analysis Criteria

The following criteria have been used in this study to assess the impact of the traffic volumes for the various scenarios.

Turning movements with a volume-to-capacity [V/C] ratio of 0.85 or greater are considered to be critical movements and therefore have been highlighted in the LOS tables below.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a stop sign controlled intersection and greater than 80 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign controlled intersections are shown in Table 2. A description of traffic performance characteristics is included for each LOS.

The $95^{\text {th }}$ percentile queuing length at the study area intersections were reviewed for each scenario to ensure that the vehicle queuing at adjacent intersections did not create operational issues.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Table 2 - Level of Service Criteria for Intersections

LOS	LOS Description	Control Delay (seconds per vehicle)	
		Signalized Intersections	Stop Controlled Intersections
A	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0
B	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0
C	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0
E	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0

3 Intersection Operation Without Proposed Development

3.1 Introduction

Existing year operational conditions were established to determine how the street network within the study area is currently functioning and would function in the future without the proposed development. This provides a base case scenario to compare with future development scenarios. Traffic operations within the study area were evaluated using the existing (2015) traffic volumes with the existing road configuration and traffic control. The intersection performance was measured using the traffic analysis software, Synchro 9, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analyzing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 9 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and unsignalized intersections in relation to each other, thus not only providing level-ofservice [LOS] for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

3.2 Intersection Operation for Existing (2016) Traffic Volume

The results of the LOS analysis under existing (2016) traffic volumes during the AM and PM peak hour can be found below in Table 3. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in Appendix C.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Table 3 - Intersection Operation for Existing (2016) Traffic Volumes

Intersection (E-W Street / N-S Street)	Critical Movement	Weekday AM Peak			Weekend PM Peak		
		©			O	$\begin{aligned} & \overline{0} \frac{\pi}{2} \\ & \stackrel{\star}{0} \frac{\pi}{\circ} \end{aligned}$	
County Road 5 / County Road 13 (unsignalized)	Overall	A	6.1	-	A	6.3	-
	NB	A	10.0	0.07	B	12.6	0.26
	SB	B	11.0	0.16	B	11.8	0.13
County Road 5 / Concession Road 6 (unsignalized)	Overall	A	0.8	-	A	0.6	-
	NB	A	9.8	0.02	A	9.8	0.01
	SB	A	9.8	0.00	B	10.1	0.00

The results of the intersection operation analysis indicate that all individual turning movements in the study area are operating at a very good level of service or better during the AM and PM peak hour.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the existing unsignalized intersection of County Road 5 / County Road 13 or County Road 5 / Concession Road 6 (results are provided in Appendix G).

An analysis was completed for left turn movement on County Road 5 at County Road 13 and on County Road 5 at Concessions 6. Based on the criteria outlined in Section E.9.1 of the of the Ontario Ministry of Transportation Geometric Design Standards for Ontario Highways [MTO GDSOH], left turn lanes are not warranted on County Road 5^{2} (nomograph excerpts from the MTO GDSOH are provided in Appendix H).

For right turn movements, the criteria outlined in Section E. 7 of the Ontario Ministry of Transportation MTO GDSOH were applied. Based on the above-noted criteria, no additional right turn lanes are warranted at any of the study area intersections.

No improvements are recommended for the existing (2016) scenario.

3.3 Intersection Operation for Background (2031) Traffic Volume

The results of the intersection operation analysis under background (2031) traffic volumes without the proposed development during the AM and PM peak hour can be found below in Table 4. Detailed output of the Synchro analysis can be found in Appendix D.

[^1]
JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Table 4 - Intersection Operation for Background (2031) Traffic Volumes

Intersection (E-W Street / N-S Street)	Critical Movement	Weekday AM Peak			Weekend PM Peak		
		0	$\begin{aligned} & \overline{0} \\ & \frac{\pi}{2} \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$		O		
County Road 5 / County Road 13 (unsignalized)	Overall	A	6.3	-	A	6.9	-
	NB	A	10.3	0.08	B	13.9	0.32
	SB	B	11.5	0.19	B	12.7	0.17
County Road 5 / Concession Road 6 (unsignalized)	Overall	A	0.8	-	A	0.6	-
	NB	A	10.0	0.02	B	10.1	0.01
	SB	A	10.0	0.00	B	10.3	0.00

The results of the intersection operation analysis indicate that all individual turning movements in the study area are operating at a very good level of service or better during the AM and PM peak hour.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the existing unsignalized intersection of County Road 5 / County Road 13 or County Road 5 / Concession Road 6 (results are provided in Appendix G).

An analysis was completed for left turn movement on County Road 5 at County Road 13 and on County Road 5 at Concessions 6. Based on the criteria outlined in Section E.9.1 of the MTO GDSOH, left turn lanes are not warranted on County Road 5 (nomograph excerpts from the MTO GDSOH are provided in Appendix H).

For right turn movements, the criteria outlined in Section E. 7 of the Ontario Ministry of Transportation MTO GDSOH were applied. Based on the above-noted criteria, no additional right turn lanes are warranted at any of the study area intersections.

No improvements are recommended for the background (2031) scenario.

3.4 Intersection Operation for Background (2036) Traffic Volume

The results of the intersection operation analysis under background (2036) traffic volumes without the proposed development during the AM and PM peak hour can be found below in Table 5. Detailed output of the Synchro analysis can be found in Appendix D.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Table 5 - Intersection Operation for Background (2036) Traffic Volumes

Intersection (E-W Street / N-S Street)	Critical Movement	Weekday AM Peak			Weekend PM Peak		
		O	$\begin{aligned} & \text { 은 } \\ & \text { त } \\ & 0 \frac{\pi}{0} \end{aligned}$		O		O $\stackrel{y}{4}$ $\stackrel{1}{4}$ 0 0
County Road 5 / County Road 13 (unsignalized)	Overall	A	6.4	-	A	7.1	-
	NB	A	10.4	0.09	B	14.4	0.34
	SB	B	11.7	0.20	B	13.0	0.18
County Road 5 / Concession Road 6 (unsignalized)	Overall	A	0.8	-	A	0.6	-
	NB	B	10.2	0.02	B	10.2	0.01
	SB	B	10.1	0.00	B	10.4	0.00

The results of the intersection operation analysis indicate that all individual turning movements in the study area are operating at a very good level of service or better during the AM and PM peak hour.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the existing unsignalized intersection of County Road 5 / County Road 13 or County Road 5 / Concession Road 6 (results are provided in Appendix G).

An analysis was completed for left turn movement on County Road 5 at County Road 13 and on County Road 5 at Concessions 6. Based on the criteria outlined in Section E.9.1 of the MTO GDSOH, left turn lanes are not warranted on County Road 5 (nomograph excerpts from the MTO GDSOH are provided in Appendix H).

For right turn movements, the criteria outlined in Section E. 7 of the Ontario Ministry of Transportation MTO GDSOH were applied. Based on the above-noted criteria, no additional right turn lanes are warranted at any of the study area intersections.

No improvements are recommended for the background (2036) scenario.

4 Proposed Development Traffic Generation and Assignment

4.1 Proposed Development Traffic Generation

The proposed development will include 666 single-detached residential units and a 1.67 hectare commercial block. The specifics for the commercial block are not known at this time; however, based on our discussions with the Developer, the GFA for the proposed commercial space will be approximately 3,753 sq.m. (40,400 sq.ft.). It is anticipated that the entire development will be occupied by 2031.

The Institute of Transportation Engineers [ITE] produces a document entitled Trip Generation (9 $9^{\text {th }}$ Edition), which is used to predict the number of trips associated with new developments. The ITE is a well-recognized agency throughout North America, and has completed numerous studies to identify trip rates associated with various types of developments including retail, residential, recreational, institutional, industrial, and office.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

The traffic generation for the subject site has been based on the ITE Trip Generation data. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 210 (Single-Family Detached Housing); and
- ITE lane use 820 (Shopping Centre).

The estimated trip generation of the proposed development is illustrated below in Table 6. The peak hour traffic rates have been applied for the residential and commercial traffic generation calculation.

Table 6 - Estimated Traffic Generation of Proposed Development

Land Use	Size	AM Peak Hour			PM Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL
Single-Family Detached Housing ITE Land Use: 210	666 units	125	354	479	363	204	567
Shopping Centre ITE Land Use: 820	$\begin{aligned} & 3,757 \text { sq.m. } \\ & 40,400 \mathrm{sq} . \mathrm{ft} . \end{aligned}$	24	15	39	72	78	150
TOTAL Trip Generation		149	369	518	435	282	717
Internal Trips (Residential \& Commercial)		-2	-2	-4	-15	-15	-30
TOTAL External Trips		147	367	514	420	267	687
Commercial Pass-by Trips (34\%)		-8	-5	-13	-22	-23	-45
TOTAL Primary Trips		139	362	501	398	244	642

In order to be conservative, no transportation modal split has been applied to the above-noted traffic generation calculation.

4.2 Barzo Development Traffic Generation

The traffic generation from the Barzo property will have a notable impact on the traffic volumes in the local area; consequently we have included this traffic in our future horizon year analysis. As noted, the Barzo development is expected to include 1,238 residential lots including 415 townhouse and 823 single detached units. We have assumed that the entire development will be occupied by 2031.

The traffic generation for the Barzo property has been based on the ITE Trip Generation data. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 210 (Single-Family Detached Housing); and
- ITE land use 220 (Multifamily Housing (Low-Rise)).

The estimated trip generation from the Barzo property is illustrated below in Table 7. The peak hour traffic rates have been applied for the traffic generation calculation.

Table 7 - Estimated Traffic Generation of Proposed Development

Land Use	Size	AM Peak Hour			PM Peak Hour		
		IN	OUT	TOTAL	IN	OUT	TOTAL
Single-Family Detached Housing ITE Land Use: 210	823 units	153	436	589	438	246	684
Multifamily Housing (Low-Rise) ITE Land Use: 220	415 units	42	142	184	132	78	210
Total Trip Generation	$\mathbf{1 , 2 3 8}$ units	$\mathbf{1 9 5}$	$\mathbf{5 7 8}$	$\mathbf{7 7 3}$	$\mathbf{5 7 0}$	$\mathbf{3 2 4}$	$\mathbf{8 9 4}$

PEARSON ENGINEERING LTD.

B7 - 48 Alliance Blvd., Barrie ON L4M 5K3
www.pearsoneng.com

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

In order to be conservative, no transportation modal split has been applied to the above-noted traffic generation calculation.

4.3 Traffic Assignment

For the purpose of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed. The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. The distribution of traffic beyond the local area has been based on the distribution calculations completed for previous studies completed in the area ${ }^{3}$ (excerpts provided in Appendix F). Table 8 summarizes the anticipated distribution of egress traffic from the subject site.

Table 8 - Site Traffic Distribution

Direction	Road	From		To	
		AM Peak	PM Peak	AM Peak	PM Peak
East	County Road 5	20%	40%	40%	25%
West	County Road 5	35%	15%	15%	30%
North	County Road 13	20%	15%	15%	20%
South	County Road 13	20%	25%	20%	20%
	Concession Road 6	5%	5%	10%	5%
TOTAL		$\mathbf{1 0 0 \%}$			

For each of the individual areas identified in Table 6, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time. Based on the proposed road configuration within the subject site, it is anticipated that there would be some trips to the south, east and west that would travel via Pine Park Boulevard; however, these trips would be low compared with the overall traffic generation for the subject site. In order to be conservative, for the purpose of the distribution of the site generated traffic, we have assumed all traffic will travel via the County Road 13 / Street C and County Road 5 / Concession Road 6 intersections.

Using this traffic distribution pattern, the subject site traffic assignment for the AM and PM peak hours were calculated and have been illustrated in Figure 6.

The Barzo property traffic assignment for the AM and PM peak hours were also calculated using this methodology and has been illustrated in Figure 7.

[^2]
JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Figure 6 - Traffic Assignment for Subject Site

Figure 7 - Traffic Assignment for Barzo Property

4.4 Total Horizon Year Traffic Volumes with the Proposed Development

For the total (2031 and 2036) horizon year with development traffic volumes, the proposed development traffic and Barzo property traffic was added to the background (2031 and 2036) traffic volumes. The resulting total (2031 and 2036) horizon year with proposed traffic volume for the AM and PM peak hour can be found in Figures 8 and 9 respectively.

JD Northcote Engineering Inc.
86 Cumberland Street, Barrie ON, L4N 2P6 www.JDEngineering.ca

Figure 8 - Total (2031) Peak Hour Traffic Volumes

Figure 9 - Total (2036) Peak Hour Traffic Volumes

5 Intersection Development

Operation
With
Proposed

5.1 Intersection Operation for Total (2031) Traffic Volume

The results of the intersection operation analysis under total (2031) traffic volumes with the proposed development (including the Barzo property) during the AM and PM peak hour can be found below in Table 9. Detailed output from the Synchro analysis can be found in Appendix E.

Table 9 - Intersection Operation for Total (2031) Traffic Volumes

Intersection (E-W Street / N-S Street)	Critical Movement	Weekday AM Peak			Weekend PM Peak		
		O			O	$\begin{aligned} & \overline{0} \\ & \text { 흔 } \\ & \overline{0} \frac{\pi}{0} \end{aligned}$	\circ $\stackrel{0}{4}$ $\frac{\sim}{1}$ 0 0
County Road 5 / County Road 13 (unsignalized)	Overall	B	73.3	-	C	ERR	-
	NB	C	21.1	0.38	F	427.2	1.84
	SB	F	125.7	1.18	F	ERR	ERR
County Road 5 / Concession Road 6 (unsignalized)	Overall	A	25.3	-	B	7.9	-
	NB	B	12.5	0.06	C	21.3	0.22
	SB	F	55.5	0.93	D	30.7	0.62
Street C / County Road 13 (unsignalized)	Overall	B	24.5	-	C	23.9	-
	WB	E	39.3	0.90	F	57.3	0.94
	SB	A	4.5	0.06	A	8.1	0.15

The results of the intersection operation analysis indicate that side street approaches at the intersection of County Road 5 / County Road 13 are experiencing very long control delays.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the existing unsignalized intersection of County Road 5 / County Road 13 or County Road 5 / Concession Road 6 (results are provided in Appendix G).

Based on the additional traffic at the north and south leg of the intersection of County Road 5 / County Road 13, as a result of the proposed development of the subject site and the Barzo property, it is recommended that this intersection is converted to an unsignalized all-way stop, by adding stop control on the east and west leg of the intersection ${ }^{4}$.

An analysis was completed for left turn movement on County Road 5 at Concessions 6 and on County Road 13 at Street C. Based on the criteria outlined in Section E.9.1 of the MTO GDSOH, left turn lanes are warranted for the existing $80 \mathrm{~km} / \mathrm{h}$ posted speed limit at these intersections. However, if the posted $50 \mathrm{~km} / \mathrm{h}$ speed limit was extended slightly, to include the above-noted intersections, left turn lanes would not be warranted at either intersection (nomograph excerpts from the MTO GDSOH are provided in Appendix H). With the full development of the subject site and the Barzo property and the associated volume of southbound left turn movements on County Road 13 at Street C, a southbound left turn lane (with a 15 metre storage length) is recommended at this intersection.

The traffic generation from the full build-out of the subject site alone, is well below the warrant for southbound left turn lane on County Road 13 at Street C. This is based on the existing posted $80 \mathrm{~km} / \mathrm{h}$ speed limit.

[^3]A southbound left turn storage lane (35 metre parallel length and 30 metre taper length) is recommended on Concession 6 at County Road 5 to facilitate the volume of southbound left turn movements at this intersection for the full build-out of the subject site and the Barzo property.

For right turn movements, the criteria outlined in Section E. 7 of the Ontario Ministry of Transportation MTO GDSOH were applied. Based on the above-noted criteria, a 60 metre right turn taper is recommended on County Road 13 at Street C. A full right turn lane is not warranted at this location due to the low volume of through traffic on County Road 13 at Street C. It is recommended that the right-turn taper is constructed in conjunction with the construction of the County Road 13 / Street C intersection.

A right turn taper is also recommended for westbound traffic on County Road 5 at Concession Road 6. A full right turn lane is not warranted at this location due to the low volume of through traffic on County Road 5 at Concession Road 6. It is recommended that the right-turn taper is constructed following occupancy of approximately 35% of the development within the subject site and the Barzo property (approximately 665 units).

As noted in Section 4.3, it is anticipated that a small portion of the overall traffic generated by the subject site will travel via the existing local roads, south of the subject site to access County Road 13 and County Road 5. Based on our review, no operational or capacity issues are anticipated within the existing local road network south of the subject site as a result of the minor additional traffic generated by the subject site.

The existing 90 degree corner where Columbus Lane intersects with Pine Park Boulevard will become a t-intersection as a result of the proposed Street B connection. It is recommended that the proposed t-intersection is unsignalized with one-way stop control for the eastbound (Columbus Lane) approach. Based on our site visit and review of the engineering drawings, the proposed intersection will meet the Transportation Association of Canada minimum sight distance requirements.

The results of the Synchro analysis with the above-noted improvements can be found below in Table 10. Detailed output of the Synchro analysis can be found in Appendix E.

PEARSON ENGINEERING LTD.

Table 10 - Intersection Operation for Total (2031) Traffic Volumes (with improvements)

Intersection (E-W Street / N-S Street)	Critical Movement	Weekday AM Peak			Weekend PM Peak		
		0			¢		
County Road 5 / County Road 13 (unsignalized)	Overall	B	19.6	-	C	51.5	-
	EB	B	13.3	0.41	D	29.5	0.71
	SB	D	25.8	0.81	E	46.4	0.89
	NB	B	10.4	0.22	F	84.5	1.05
County Road 5 / Concession Road 6 (unsignalized)	Overall	A	11.1	-	A	4.8	-
	NB	B	12.5	0.06	C	21.0	0.21
	SB	C	23.7	0.68	C	15.7	0.33
Street C / County Road 13 (unsignalized)	Overall	A	15.3	-	A	10.7	-
	WB	C	24.1	0.78	C	23.7	0.71
	SB	A	4.5	0.06	A	8.1	0.15

The results of the intersection operation analysis indicate that most of the individual turning movements in the study area are operating at a good level of service or better during the AM and PM peak hour. The only exception is the intersection of County Road 5 / County Road 13, which is operating slightly over capacity for northbound and southbound movements. Based on our review, traffic signals are not warranted at this intersection; however, it is recommended that the County continue to monitor the traffic volumes at this intersection as the Barzo property approaches build-out to determine if traffic signals are warranted.

No additional improvements, beyond those noted above, are recommended for the total (2031) scenario.

5.2 Intersection Operation for Total (2036) Traffic Volume

The results of the intersection operation analysis under total (2036) traffic volumes with the proposed development (including the Barzo property) during the AM and PM peak hour can be found below in Table 11.

PEARSON ENGINEERING LTD.

B7 - 48 Alliance Blvd., Barrie ON L4M 5K3
www.pearsoneng.com

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Table 11 - Intersection Operation for Total (2036) Traffic Volumes

Intersection (E-W Street / N-S Street)	Critical Movement	Weekday AM Peak			Weekend PM Peak		
		on		은 $\stackrel{0}{7}$ $\stackrel{0}{y}$	O		
County Road 5 / County Road 13 (unsignalized)	Overall	B	20.6	-	C	56.9	-
	EB	B	13.6	0.43	D	31.4	0.73
	SB	D	27.6	0.83	F	50.5	0.91
	NB	B	10.5	0.23	F	95.6	1.08
County Road 5 / Concession Road 6 (unsignalized)	Overall	A	11.6	-	A	4.9	-
	NB	B	12.7	0.07	C	21.2	0.22
	SB	D	28.7	0.70	C	16.1	0.34
Street C / County Road 13 (unsignalized)	Overall	A	15.4	-	A	10.8	-
	WB	C	24.5	0.78	C	24.0	0.71
	SB	A	4.5	0.06	A	8.1	0.15

The results of the intersection operation analysis indicate that most of the individual turning movements in the study area are operating at a good level of service or better during the AM and PM peak hour. The only exception is the intersection of County Road 5 / County Road 13, which is operating slightly above capacity for northbound and southbound movements.

Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at the existing unsignalized intersection of County Road 5 / County Road 13 or County Road 5 / Concession Road 6 (results are provided in Appendix G).

Based on the results of the Synchro analysis, it is recommended that the County continue to monitor the traffic volumes at the intersection of County Road 5 / County Road 13 as the Barzo property approaches build-out, to determine if traffic signals are warranted.

An analysis was completed for left turn movement on County Road 5 at Concessions 6 and on County Road 13 at Street C. Based on the criteria outlined in Section E.9.1 of the MTO GDSOH, left turn lanes are warranted for the existing $80 \mathrm{~km} / \mathrm{h}$ posted speed limit at these intersections. However, if the posted $50 \mathrm{~km} / \mathrm{h}$ speed limit was extended slightly, to include the above-noted intersections, left turn lanes would not be warranted at either intersection (nomograph excerpts from the MTO GDSOH are provided in Appendix H). With the full development of the subject site and the Barzo property and the associated volume of southbound left turn movements on County Road 13 at Street C, a southbound left turn lane (with a 15 metre storage length) is recommended at this intersection.

The traffic generation from the full build-out of the subject site alone, is well below the warrant for southbound left turn lane on County Road 13 at Street C. This is based on the existing posted 80km/h speed limit.

For right turn movements, the criteria outlined in Section E. 7 of the Ontario Ministry of Transportation MTO GDSOH were applied. Based on the above-noted criteria, no additional right turn lanes are warranted at any of the study area intersections.

PEARSON ENGINEERING LTD.

B7 - 48 Alliance Blvd., Barrie ON L4M 5K3
www.pearsoneng.com

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

No additional improvements are recommended for the total (2036) scenario.

5.2.1 Sight Distance Analysis

JD Engineering completed an analysis of the sight distances for the proposed Street C intersection with County Road 13. Our analysis is based on our observation of the available sight distance from the centerline of the Street C entrance at a height of 1.05 metres above grade (driver's eye level) at an offset of 3.0 metres from the edge of pavement, to a point on the centre of the upstream and downstream lane of County Road 13 at a height of 1.05 m (object height).

Based on our review, the egress sight distance from Street C at County Road 13 are in excess of 230 metres (County's minimum sight distance requirement for a posted speed limit of $80 \mathrm{~km} / \mathrm{h}$) and consequently are acceptable for the existing posted speed limit on County Road 13.

Our sight distance review was completed during a site visit with the County Staff. The County Staff are in agreement that the minimum (230 metre) sight distance is met for Street C.

5.2.2 Site Access

The Street C / County Road 13 intersection will operate efficiently as an unsignalized two-lane fullmovement access onto County Road 13, with one-way stop control for the eastbound egress movement. A northbound right turn taper (60 metres) is recommended on County Road 13 at Street C and should be constructed in conjunction with the proposed intersection of County Road 13 / Street C. A southbound left turn lane is also recommended on County Road 13 at Street C (with a 15 metre storage length). The warrant for the construction of the southbound left turn lane will depend on the development schedule; however, the southbound left turn lane is not warranted as a result of the traffic generation from the full build-out of the subject site alone.

The Street C / Concession Road 6 intersection will essentially form a 90 degree bend in the road and will operate efficiently with unsignalized control. No lane improvements are recommended on Concession Road 6 at Street C.

The existing 90 degree corner where Columbus Lane intersects with Pine Park Boulevard will become a t-intersection as a result of the proposed Street B connection. It is recommended that the proposed t-intersection is unsignalized with one-way stop control for the eastbound (Columbus Lane) approach. Based on our site visit and review of the engineering drawings, the proposed intersection will meet the Transportation Association of Canada minimum sight distance requirements.

6 Summary

The Developer retained JD Engineering to complete a traffic impact study in support of the proposed development located between County Road 13 and Concession Road 6, North of Moore Ave and Columbus Lane, in the community of Everett, Township of Adjala-Tosorontio [Township], County of Simcoe [County]. The proposed plan of subdivision is shown in Appendix A. This chapter summarizes the conclusions and recommendations from the study.

1. The Developer is proposing to construct 666 single detached residential units and a 1.67 hectare commercial block (specifics not known at this time).
2. A large parcel of land north of the subject site [Barzo property] is expected to be developed within roughly the same time period as the subject site. For the purpose of this report, we
have assumed that this property will include 1,238 residential lots including 415 townhouse and 823 single detached units.
3. The proposed development includes one full-movement access onto County Road 13 at the west end of the site via Street C and a second full-movement access onto the planned future extension of Concession Road 6 at the west end of the site via Street C. There is one proposed connection into the existing development to the south via a connection to Pine Park Boulevard from Street B. Proposed future connections to the Barzo property are planned via Street E, Street J and Street P.
4. The proposed development is expected to generate a total of 514 AM and 687 PM peak hour trips.
5. Background traffic counts were commissioned by JD Engineering at the intersection of County Road 5 / Concession Road 6 and on County Road 13 at the proposed location of Street C on Thursday April 7, 2016. JD Engineering also obtained traffic counts completed by the County from Thursday July 9, 2015 at the intersection of County Road 5 / County Road 13.
6. The background traffic growth rate for the study area has been based on review of historic AADT data from the study area, provided by the County.
7. An intersection operation analysis was completed at the existing intersections in the study area, using the existing (2016) and background (2031 and 2036) traffic volumes without the proposed development. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. No improvements were warranted for the existing (2016) and background (2031 and 2036) scenarios.
8. It is anticipated that the planned extension of Concession Road 6 , up to Street C will occur prior to 2031.
9. An estimate of the amount of traffic that would be generated by the proposed development was calculated and assigned to the study area streets and intersections. It is assumed that the proposed development will be completely built-out and occupied by 2031.
10. An estimate of the amount of traffic that would be generated by the Barzo property was also calculated and assigned to the study area streets and intersections. It is assumed that the Barzo property will be completely built-out and occupied by 2031.
11. An intersection operation analysis was completed for the study area using the total (2031 and 2036) traffic volumes with the traffic generated by the proposed development and Barzo property. The following improvements are recommended:
2031 Horizon Year

- County Road 5 / County Road 13 - add eastbound and westbound stop control to form an all-way stop control intersection ${ }^{5}$.
- County Road 13 / Street C - add a 60 metre northbound right-turn taper. It is recommended that the right-turn taper is constructed in conjunction with the proposed intersection of County Road 13 / Street C.

[^4]
PEARSON ENGINEERING LTD.

B7 - 48 Alliance Blvd., Barrie ON L4M 5K3 www.pearsoneng.com

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6 www.JDEngineering.ca

- County Road 13 / Street C - add a southbound left turn lane (15 metre storage length). The warrant for the construction of the southbound left turn lane will depend on the development schedule; however, the southbound left turn lane is not warranted as a result of the traffic generation from the full build-out of the subject site alone.
- County Road 5 / Concession Road 6 - add a 60 metre westbound right-turn taper. It is recommended that the right-turn taper is constructed prior to occupancy of 35% of the development within the subject site and Barzo property (approximately 583 units).

12. The recommended configuration for the County Road 13 / Street C intersection is fullmovement with one-way stop control for westbound egress movements from the subject site.
13. The existing 90 degree corner where Columbus Lane intersects with Pine Park Boulevard will become a t-intersection as a result of the proposed Street B connection. It is recommended that the proposed t-intersection is unsignalized with one-way stop control for the eastbound (Columbus Lane) approach.
14. In summary, with the above-noted infrastructure improvements, the proposed development will not add significant delay or congestion to the local roadway network.

PEARSON ENGINEERING LTD.

JD Northcote Engineering Inc.

86 Cumberland Street, Barrie ON, L4N 2P6
www.JDEngineering.ca

Appendix A Plan of Subdivision (Farsight Homes) \& Preliminary Draft Plan (Barzo Lands)

Appendix B Traffic Counts

Ontario Traffic Inc

Total Count Diagram

Comments

Start	07-Apr-16	NB		Hour Totals		SB		Hour Totals		Combined Totals	
Time	Thu	Morning	Afternoon								
12:00		*	9				3				
12:15		*	8			*	3				
12:30		*	8			*	4				
12:45		*	4	0	29	*	8	0	18	0	47
01:00		*	6			*	8				
01:15		*	6			*	8				
01:30		*	9			*	7				
01:45		*	13	0	34	*	9	0	32	0	66
02:00		*	5			*	9				
02:15		*	9			*	11				
02:30		*	9			*	3				
02:45		*	9	0	32	*	2	0	25	0	57
03:00		*	8			*	5				
03:15		*	9			*	5				
03:30		*	4			*	7				
03:45		*	4	0	25	*	7	0	24	0	49
04:00		*	5			*	6				
04:15		*	5			*	8				
04:30		*	6			*	9				
04:45		*	9	0	25	*	1	0	24	0	49
05:00		*	21			*	3				
05:15		*	12			*	3				
05:30		*	12			*	5				
05:45		*	15	0	60	*	8	0	19	0	79
06:00		*	11			*	8				
06:15		*	7			*	9				
06:30		*	7			*	6				
06:45		*	8	0	33	*	9	0	32	0	65
07:00		2	*			6	*				
07:15		4	*			6	*				
07:30		4	*			5	*				
07:45		7	*	17	0	9	*	26	0	43	0
08:00		6	*			12	*				
08:15		9	*			11	*				
08:30		9	*			11	*				
08:45		1	*	25	0	21	*	55	0	80	0
09:00		1	*			12	*				
09:15		2	*			14	*				
09:30		1	*			5	*				
09:45		4	*	8	0	5	*	36	0	44	0
10:00		4	*			7	*				
10:15		5	*			12	*				
10:30		12	*			8	*				
10:45		11	*	32	0	8	*	35	0	67	0
11:00		12	*			8	*				
11:15		15	*			9	*				
11:30		9	*			9	*				
11:45		9	*	45	0	3	*	29	0	74	0
Total		127	238			181	174			308	412
Percent		34.8\%	65.2\%			51.0\%	49.0\%			42.8\%	57.2\%
Grand Total		127	238			181	174			308	412
Percent		34.8\%	65.2\%			51.0\%	49.0\%			42.8\%	57.2\%

COUNTY OF SIMCOE

TRANSPORTATION AND ENGINEERING
1110 Highway 26, Midhurst, ON
705-726-9300
Intersection Count
File Name : Everett Count
Site Code : 00000000
Start Date : 7/9/2015
Page No : 1
County Road 5 at

County Road 13

Everett
Groups Printed- Unshifted - Bank 1

	CR 13 From North					CR 5 From East					CR 13 From South					CR 5 From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
06:00 AM	0	21	4	0	25	1	2	4	0	7	1	0	0	0	1	4	13	1	0	18	51
06:15 AM	1	17	5	0	23	2	1	5	0	8	2	2	1	0	5	3	13	1	0	17	53
06:30 AM	1	28	12	0	41	4	3	10	0	17	4	1	4	0	9	12	18	1	0	31	98
06:45 AM	0	16	4	0	20	2	2	2	0	6	2	1	0	0	3	14	12	3	0	29	58
Total	2	82	25	0	109	9	8	21	0	38	9	4	5	0	18	33	56	6	0	95	260

07:00 AM	1	21	4	0	26	5	7	5	0	17	6	2	2	0	10	6	15	1	0	22	75
07:15 AM	1	14	6	0	21	1	5	6	0	12	3	4	5	0	12	5	12	2	0	19	64
07:30 AM	1	15	12	0	28	2	8	7	0	17	4	4	4	0	12	3	22	0	0	25	82
07:45 AM	3	19	5	0	27	3	6	1	0	10	6	8	1	0	15	5	16	4	0	25	77
Total	6	69	27	0	102	11	26	19	0	56	19	18	12	0	49	19	65	7	0	91	298

08:00 AM	3	11	1	0	15	2	6	4	0	12	3	6	2	0	11	8	15	2	0	25	63
08:15 AM	0	12	2	0	14	2	2	2	0	6	3	6	2	0	11	6	25	4	0	35	66
08:30 AM	0	9	6	0	15	1	11	1	0	13	1	7	2	0	10	11	9	1	0	21	59
08:45 AM	0	14	4	0	18	4	11	5	0	20	5	4	3	0	12	6	16	2	0	24	74
Total	3	46	13	0	62	9	30	12	0	51	12	23	9	0	44	31	65	9	0	105	262

*** BREAK ***

11:00 AM	0	7	5	0	12	5	7	2	0	14	4	10	2	0	16	3	15	0	0	18	60
11:15 AM	2	8	4	0	14	4	12	2	0	18	5	9	5	0	19	4	18	1	0	23	74
11:30 AM	2	7	2	0	11	4	8	1	0	13	3	5	6	0	14	2	11	1	0	14	52
11:45 AM	1	5	1	0	7	5	11	6	0	22	5	6	3	0	14	1	16	3	0	20	63
Total	5	27	12	0	44	18	38	11	0	67	17	30	16	0	63	10	60	5	0	75	249
12:00 PM	0	8	3	0	11	5	16	4	0	25	6	3	1	0	10	7	11	1	0	19	65
12:15 PM	1	13	9	0	23	5	14	3	0	22	10	8	7	0	25	3	9	3	0	15	85
12:30 PM	2	5	6	0	13	6	9	3	0	18	4	6	3	0	13	3	11	1	0	15	59
12:45 PM	3	5	4	0	12	3	14	2	0	19	0	11	3	0	14	5	12	1	0	18	63
Total	6	31	22	0	59	19	53	12	0	84	20	28	14	0	62	18	43	6	0	67	272

*** BREAK ***

03:00 PM	1	9	5	0	15	7	14	4	0	25	3	12	10	0	25	6	15	1	0	22	87
03:15 PM	5	10	10	0	25	13	18	1	0	32	3	23	16	0	42	3	24	0	0	27	126
03:30 PM	0	11	5	0	16	6	21	4	0	31	0	25	7	0	32	2	12	2	0	16	95
03:45 PM	0	9	2	0	11	7	21	5	0	33	4	20	11	0	35	6	17	1	0	24	103
Total	6	39	22	0	67	33	74	14	0	121	10	80	44	0	134	17	68	4	0	89	411

COUNTY OF SIMCOE

TRANSPORTATION AND ENGINEERING
1110 Highway 26, Midhurst, ON
705-726-9300
Intersection Count
File Name : Everett Count
Site Code : 00000000
Start Date : 7/9/2015
Page No : 2
County Road 5 at
-路
County Road 13
Everett

Groups Printed- Unshifted - Bank 1

	CR 13 From North					CR 5 From East					CR 13 From South					CR 5 From West					
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	Peds	App. Total	Int. Total
04:00 PM	3	5	8	0	16	3	27	5	0	35	4	15	7	0	26	6	12	4	0	22	99
04:15 PM	5	5	6	0	16	5	25	6	0	36	4	18	7	0	29	8	11	2	0	21	102
04:30 PM	0	11	10	0	21	9	20	4	0	33	3	19	5	0	27	1	17	4	0	22	103
04:45 PM	2	11	4	0	17	11	21	1	0	33	7	22	11	0	40	6	14	2	0	22	112
Total	10	32	28	0	70	28	93	16	0	137	18	74	30	0	122	21	54	12	0	87	416

05:00 PM	3	10	4	0	17	4	28	5	0	37	7	26	16	0	49	2	11	1	0	14	117
05:15 PM	0	5	3	0	8	16	22	1	0	39	6	18	6	0	30	4	13	3	0	20	97
05:30 PM	2	6	2	0	10	6	12	3	0	21	5	22	11	0	38	2	17	2	0	21	90
05:45 PM	4	3	6	0	13	12	22	1	0	35	6	12	13	0	31	4	18	4	0	26	105
Total	9	24	15	0	48	38	84	10	0	132	24	78	46	0	148	12	59	10	0	81	409
Grand Total	47	350	164	0	561	165	406	115	0	686	129	335	176	0	640	161	470	59	0	690	2577
Apprch \%	8.4	62.4	29.2	0		24.1	59.2	16.8	0		20.2	52.3	27.5	0		23.3	68.1	8.6	0		
Total \%	1.8	13.6	6.4	0	21.8	6.4	15.8	4.5	0	26.6	5	13	6.8	0	24.8	6.2	18.2	2.3	0	26.8	
Unshifted	47	350	164	0	561	165	406	115	0	686	129	335	176	0	640	161	470	59	0	690	2577
\% Unshifted	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100	100	100	0	100	100
Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Bank 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

COUNTY OF SIMCOE

TRANSPORTATION AND ENGINEERING
1110 Highway 26, Midhurst, ON
705-726-9300

Intersection Count
County Road 5 at
County Road 13
Everett

File Name : Everett Count
Site Code : 00000000
Start Date : 7/9/2015
Page No : 3

Road\# - Section \#	Distance	Link Description	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
		CR 13										
012-01	3.9			1,400			1,300			1,400		
		County Boundary										
		Hwy 89										
013-01	5.7			2,800			2,600			2,500		
		CR 5										
013-02	9.5			1,900			1,900			2,900		
		CR 12										
		CR 50										
014-01	3.8			1,000			950			1,200		
		Adjala-New Tech Townline										
014-02	2.9			2,000			1,700			1,700		
		CR 10										
		Victoria St. / Alliston										
015-01A	1.1			8,000			8,800			9,100		
		Essa Rd										
015-01	4.7			5,800			5,600			5,200		
		CR 5										
015-02	3.5			4,900			5,000			4,800		
		CR 21										
015-03	1.2			3,000			2,400			2,100		
		Base Borden South Limit										
		CR 23										
016-01	6.2				4,500			5,100			4,200	
		Hwy 400										
		Coldwater / North Limits										
017-01	6.8				2,100			1,500			1,600	
		Quarry Road										
017-02	4.3				1,200			1,200			750	
		4th Conc. Silkine										
017-03	11.9				400			400			300	
		Big Chute										
		Hwy 12										
019-01	2.5	Hwy 400			900			1,200			1,200	
019-02	2.0				1,500			1,600			1,700	
		8th Conc / Moonstone										
019-03	10.8				950			1,000			1,100	
		Hwy 93										
019-04	8.1				1,500			1,900			1,700	
		CR 27										
		Barrie Limits										
020-01	7.4				2,800			3,100			2,600	
		Line 3 Oro-Medonte										
020-02	6.0				1,800			1,500			1,500	
		Line 7 Oro-Medonte										
020-03	6.2				1,000			1,000			1,000	
		Line 11 Oro-Medonte										
020-04	1.1				1,800			1,800			1,700	
		Line 11 / Hwy 11										

Appendix C Synchro Analysis Output Existing Conditions

	4	\rightarrow	\geqslant	t	\leftarrow	4	4	4	7	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			¢	
Traffic Volume (veh/h)	1	192	27	13	46	0	3	0	8	0	1	1
Future Volume (Veh/h)	1	192	27	13	46	0	3	0	8	0	1	1
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	209	29	14	50	0	3	0	9	0	1	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	50			238			305	304	224	312	318	50
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	50			238			305	304	224	312	318	50
tC , single (s)	4.1			4.2			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			100	100	99	100	100	100
cM capacity (veh/h)	1570			1256			644	606	821	631	595	1024
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	239	64	12	2								
Volume Left	1	14	3	0								
Volume Right	29	0	9	1								
cSH	1570	1256	768	752								
Volume to Capacity	0.00	0.01	0.02	0.00								
Queue Length 95th (m)	0.0	0.3	0.4	0.1								
Control Delay (s)	0.0	1.8	9.8	9.8								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.0	1.8	9.8	9.8								
Approach LOS			A	A								
Intersection Summary												
Average Delay			0.8									
Intersection Capacity Utilization			22.7\%		CU Level	Service			A			
Analysis Period (min)			15									

	\rangle	\rightarrow	\rangle	\checkmark	\leftarrow	4	4	\uparrow	p	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			¢			¢			¢	
Traffic Volume (veh/h)	7	66	17	15	88	29	41	84	11	25	35	8
Future Volume (Veh/h)	7	66	17	15	88	29	41	84	11	25	35	8
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	8	79	20	18	105	35	49	100	13	30	42	10
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	140			99			294	281	89	326	274	122
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	140			99			294	281	89	326	274	122
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
$\mathrm{tC}, 2$ stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			92	84	99	94	93	99
cM capacity (veh/h)	1449			1500			611	618	972	536	624	931
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	107	158	162	82								
Volume Left	8	18	49	30								
Volume Right	20	35	13	10								
cSH	1449	1500	634	612								
Volume to Capacity	0.01	0.01	0.26	0.13								
Queue Length 95th (m)	0.1	0.3	7.7	3.5								
Control Delay (s)	0.6	0.9	12.6	11.8								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.6	0.9	12.6	11.8								
Approach LOS			B	B								
Intersection Summary												
Average Delay			6.3									
Intersection Capacity Utilization			26.3\%	ICU Level of Service			A			A		
Analysis Period (min)			15									

	4	\rightarrow	\geqslant	t	\leftarrow	4	4	4	7	(\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			¢			¢	
Traffic Volume (veh/h)	1	169	12	10	45	1	3	0	3	0	1	1
Future Volume (Veh/h)	1	169	12	10	45	1	3	0	3	0	1	1
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	1	190	13	11	51	1	3	0	3	0	1	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX , platoon unblocked												
vC , conflicting volume	52			203			274	272	196	275	278	52
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	52			203			274	272	196	275	278	52
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	7.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	4.2
p0 queue free \%	100			99			100	100	100	100	100	100
cM capacity (veh/h)	1567			1381			677	632	850	675	627	797
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	204	63	6	2								
Volume Left	1	11	3	0								
Volume Right	13	1	3	1								
cSH	1567	1381	754	702								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.2	0.2	0.1								
Control Delay (s)	0.0	1.4	9.8	10.1								
Lane LOS	A	A	A	B								
Approach Delay (s)	0.0	1.4	9.8	10.1								
Approach LOS			A	B								
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilization			20.0\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix D Synchro Analysis Output Background Traffic Volumes

	\Rightarrow	\rightarrow	\geqslant	\downarrow	\leftarrow	4	4	\uparrow	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			¢			¢	
Traffic Volume (veh/h)	8	77	22	22	30	13	14	21	22	31	81	7
Future Volume (Veh/h)	8	77	22	22	30	13	14	21	22	31	81	7
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	9	85	24	24	33	14	15	23	24	34	89	8
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	47			109			256	210	97	238	215	40
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	47			109			256	210	97	238	215	40
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			98			98	97	98	95	87	99
cM capacity (veh/h)	1567			1488			613	674	962	670	670	1034
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	118	71	62	131								
Volume Left	9	24	15	34								
Volume Right	24	14	24	8								
cSH	1567	1488	742	685								
Volume to Capacity	0.01	0.02	0.08	0.19								
Queue Length 95th (m)	0.1	0.4	2.1	5.3								
Control Delay (s)	0.6	2.6	10.3	11.5								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.6	2.6	10.3	11.5								
Approach LOS			B	B								
Intersection Summary												
Average Delay			6.3									
Intersection Capacity Utilization			25.3\%		CU Level of	Service			A			
Analysis Period (min)			15									

	\Rightarrow	\rightarrow	\geqslant	\downarrow	\leftarrow	4	4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			¢	
Traffic Volume (veh/h)	8	77	20	17	102	34	48	98	13	29	41	9
Future Volume (Veh/h)	8	77	20	17	102	34	48	98	13	29	41	9
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	10	92	24	20	121	40	57	117	15	35	49	11
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	161			116			340	325	104	378	317	141
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	161			116			340	325	104	378	317	141
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			90	80	98	93	92	99
cM capacity (veh/h)	1424			1479			560	582	953	476	588	910
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	126	181	189	95								
Volume Left	10	20	57	35								
Volume Right	24	40	15	11								
cSH	1424	1479	594	563								
Volume to Capacity	0.01	0.01	0.32	0.17								
Queue Length 95th (m)	0.2	0.3	10.4	4.6								
Control Delay (s)	0.7	0.9	13.9	12.7								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.7	0.9	13.9	12.7								
Approach LOS			B	B								
Intersection Summary												
Average Delay			6.9									
Intersection Capacity Utilization			29.4\%		CU Level	Service			A			
Analysis Period (min)			15									

	\Rightarrow	\rightarrow	\geqslant	7	\longleftarrow	4	4	\dagger	$>$	\checkmark	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			¢			*			\uparrow	
Traffic Volume (veh/h)	1	196	14	12	52	1	3	0	3	0	1	1
Future Volume (Veh/h)	1	196	14	12	52	1	3	0	3	0	1	1
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	1	220	16	13	58	1	3	0	3	0	1	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	59			236			316	315	228	318	322	58
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	59			236			316	315	228	318	322	58
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	7.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	4.2
p0 queue free \%	100			99			100	100	100	100	100	100
cM capacity (veh/h)	1558			1343			634	598	816	632	592	789
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	237	72	6	2								
Volume Left	1	13	3	0								
Volume Right	16	1	3	1								
cSH	1558	1343	714	676								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.2	0.2	0.1								
Control Delay (s)	0.0	1.5	10.1	10.3								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.0	1.5	10.1	10.3								
Approach LOS			B	B								
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilization			22.0\%		CU Level	Service			A			
Analysis Period (min)			15									

	\Rightarrow	\rightarrow	\geqslant	\downarrow	\leftarrow	4	4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			¢			¢	
Traffic Volume (veh/h)	9	81	23	23	32	13	15	22	23	33	85	7
Future Volume (Veh/h)	9	81	23	23	32	13	15	22	23	33	85	7
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	10	89	25	25	35	14	16	24	25	36	93	8
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	49			114			268	220	102	250	226	42
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	49			114			268	220	102	250	226	42
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			98			97	96	97	95	86	99
cM capacity (veh/h)	1564			1481			597	664	956	656	659	1032
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	124	74	65	137								
Volume Left	10	25	16	36								
Volume Right	25	14	25	8								
cSH	1564	1481	730	673								
Volume to Capacity	0.01	0.02	0.09	0.20								
Queue Length 95th (m)	0.1	0.4	2.2	5.8								
Control Delay (s)	0.6	2.6	10.4	11.7								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.6	2.6	10.4	11.7								
Approach LOS			B	B								
Intersection Summary												
Average Delay			6.4									
Intersection Capacity Utilization			25.8\%		CU Level of	Service			A			
Analysis Period (min)			15									

	4	\rightarrow	7	\checkmark	\longleftarrow	4	4	\dagger	P	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\uparrow			\uparrow			¢			\uparrow		
Traffic Volume (veh/h)	1	234	33	16	56	0	4	0	10	0	1	1
Future Volume (Veh/h)	1	234	33	16	56	0	4	0	10	0	1	1
Sign Control	Free			Free			Stop			Stop		
Grade	0\%			0\%			0\%			0\%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	254	36	17	61	0	4	0	11	0	1	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	61			290			370	369	272	380	387	61
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	61			290			370	369	272	380	387	61
tC , single (s)	4.1			4.2			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			99	100	99	100	100	100
cM capacity (veh/h)	1555			1201			582	555	772	567	542	1010
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	291	78	15	2								
Volume Left	1	17	4	0								
Volume Right	36	0	11	1								
cSH	1555	1201	710	706								
Volume to Capacity	0.00	0.01	0.02	0.00								
Queue Length 95th (m)	0.0	0.3	0.5	0.1								
Control Delay (s)	0.0	1.8	10.2	10.1								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.0	1.8	10.2	10.1								
Approach LOS			B	B								
Intersection Summary												
Average Delay			0.8									
Intersection Capacity Utilization			26.9\%		CU Level	Service			A			
Analysis Period (min)			15									

	\Rightarrow	\rightarrow	\geqslant	\downarrow	\leftarrow	4	4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			*			¢			¢	
Traffic Volume (veh/h)	9	81	21	18	107	35	50	102	13	31	43	10
Future Volume (Veh/h)	9	81	21	18	107	35	50	102	13	31	43	10
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	11	96	25	21	127	42	60	121	15	37	51	12
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	169			121			358	342	108	396	333	148
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	169			121			358	342	108	396	333	148
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	99			99			89	79	98	92	91	99
cM capacity (veh/h)	1415			1473			542	569	948	458	576	901
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	132	190	196	100								
Volume Left	11	21	60	37								
Volume Right	25	42	15	12								
cSH	1415	1473	578	547								
Volume to Capacity	0.01	0.01	0.34	0.18								
Queue Length 95th (m)	0.2	0.3	11.3	5.0								
Control Delay (s)	0.7	0.9	14.4	13.0								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.7	0.9	14.4	13.0								
Approach LOS			B	B								
Intersection Summary												
Average Delay			7.1									
Intersection Capacity Utilization			30.2\%		CU Level of	Service			A			
Analysis Period (min)			15									

	\Rightarrow	\rightarrow	\geqslant	7	\longleftarrow	4	4	\dagger	p	\downarrow	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¢			\uparrow			¢			¢		
Traffic Volume (veh/h)	1	206	15	12	55	1	4	0	4	0	1	1
Future Volume (Veh/h)	1	206	15	12	55	1	4	0	4	0	1	1
Sign Control	Free			Free			Stop			Stop		
Grade	0\%			0\%			0\%			0\%		
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	1	231	17	13	62	1	4	0	4	0	1	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	63			248			332	330	240	334	338	62
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	63			248			332	330	240	334	338	62
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	7.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	4.2
p0 queue free \%	100			99			99	100	100	100	100	100
cM capacity (veh/h)	1553			1330			619	586	804	615	580	784
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	249	76	8	2								
Volume Left	1	13	4	0								
Volume Right	17	1	4	1								
cSH	1553	1330	700	667								
Volume to Capacity	0.00	0.01	0.01	0.00								
Queue Length 95th (m)	0.0	0.2	0.3	0.1								
Control Delay (s)	0.0	1.4	10.2	10.4								
Lane LOS	A	A	B	B								
Approach Delay (s)	0.0	1.4	10.2	10.4								
Approach LOS			B	B								
Intersection Summary												
Average Delay			0.6									
Intersection Capacity Utilization			23.0\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix ESynchro Analysis Output Total Traffic Volumes

	4	\rightarrow	7	\checkmark		4	4	\dagger	p		$\frac{1}{\dagger}$	\pm
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			\&			\&			¢	
Traffic Volume (veh/h)	1	298	31	15	66	53	3	17	9	301	95	1
Future Volume (Veh/h)	1	298	31	15	66	53	3	17	9	301	95	1
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	324	34	16	72	58	3	18	10	327	103	1
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	130			358			528	505	341	495	493	101
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	130			358			528	505	341	495	493	101
tC, single (s)	4.1			4.2			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			99			99	96	99	29	78	100
cM capacity (veh/h)	1468			1132			381	466	706	462	473	960
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	359	146	31	431								
Volume Left	1	16	3	327								
Volume Right	34	58	10	1								
cSH	1468	1132	511	465								
Volume to Capacity	0.00	0.01	0.06	0.93								
Queue Length 95th (m)	0.0	0.3	1.5	81.8								
Control Delay (s)	0.0	1.0	12.5	55.5								
Lane LOS	A	A	B	F								
Approach Delay (s)	0.0	1.0	12.5	55.5								
Approach LOS			B	F								
Intersection Summary												
Average Delay			25.3									
Intersection Capacity Utilization			54.1\%		CU Level	Service			A			
Analysis Period (min)			15									

JD Engineering	Synchro 9 Report
$04 / 27 / 2021$	

	4	\rightarrow	\cdots	7		4	4	\dagger	p		$\frac{1}{1}$	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			\&			\&			\&	
Traffic Volume (veh/h)	110	120	20	17	151	66	48	340	13	57	155	131
Future Volume (Veh/h)	110	120	20	17	151	66	48	340	13	57	155	131
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	131	143	24	20	180	79	57	405	15	68	185	156
Pedestrians												
Lane Width (m)												
Walking Speed (m / s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	259			167			925	716	155	894	688	220
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	259			167			925	716	155	894	688	220
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	90			99			45	0	98	0	44	81
cM capacity (veh/h)	1311			1417			104	317	893	0	329	823
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	298	279	477	409								
Volume Left	131	20	57	68								
Volume Right	24	79	15	156								
cSH	1311	1417	259	0								
Volume to Capacity	0.10	0.01	1.84	Err								
Queue Length 95th (m)	2.5	0.3	249.0	Err								
Control Delay (s)	4.0	0.7	427.2	Err								
Lane LOS	A	A	F	F								
Approach Delay (s)	4.0	0.7	427.2	Err								
Approach LOS			F	F								
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utilization			65.3\%		U Level	Service			C			
Analysis Period (min)			15									

	4	\rightarrow	7	7		4	4	\dagger	p		$\frac{1}{\dagger}$	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			$\$$			\&			*	
Traffic Volume (veh/h)	44	224	14	12	84	356	3	49	3	114	29	50
Future Volume (Veh/h)	44	224	14	12	84	356	3	49	3	114	29	50
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	49	252	16	13	94	400	3	55	3	128	33	56
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	494			268			750	878	260	708	686	294
vC 1 , stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	494			268			750	878	260	708	686	294
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.3
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free \%	95			99			99	80	100	55	91	92
cM capacity (veh/h)	1080			1307			271	273	784	284	352	736
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	317	507	61	217								
Volume Left	49	13	3	128								
Volume Right	16	400	3	56								
cSH	1080	1307	282	350								
Volume to Capacity	0.05	0.01	0.22	0.62								
Queue Length 95th (m)	1.1	0.2	6.1	30.1								
Control Delay (s)	1.7	0.3	21.3	30.7								
Lane LOS	A	A	C	D								
Approach Delay (s)	1.7	0.3	21.3	30.7								
Approach LOS			C	D								
Intersection Summary												
Average Delay			7.9									
Intersection Capacity Utilization			59.3\%		CU Level	Service			B			
Analysis Period (min)			15									

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

$J D$ Engineering	Synchro 9 Report
$04 / 28 / 2021$	

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

	4	\rightarrow	7	7	4	4	4	\dagger	p	($\frac{1}{\dagger}$	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow	「		\&		${ }^{1}$	F	
Traffic Volume (veh/h)	1	309	33	16	69	53	4	17	10	301	95	1
Future Volume (Veh/h)	1	309	33	16	69	53	4	17	10	301	95	1
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1	336	36	17	75	58	4	18	11	327	103	1
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	133			372			518	523	354	485	483	75
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	133			372			518	523	354	485	483	75
tC , single (s)	4.1			4.2			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.3			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			98			99	96	98	30	78	100
cM capacity (veh/h)	1464			1118			389	454	694	467	479	992
Direction, Lane \#	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	373	92	58	33	327	104						
Volume Left	1	17	0	4	327	0						
Volume Right	36	0	58	11	0	1						
cSH	1464	1118	1700	502	467	481						
Volume to Capacity	0.00	0.02	0.03	0.07	0.70	0.22						
Queue Length 95th (m)	0.0	0.4	0.0	1.6	40.7	6.2						
Control Delay (s)	0.0	1.6	0.0	12.7	28.7	14.5						
Lane LOS	A	A		B	D	B						
Approach Delay (s)	0.0	1.0		12.7	25.3							
Approach LOS				B	D							
Intersection Summary												
Average Delay			11.6									
Intersection Capacity Utilization			49.1\%		U Level	Service			A			
Analysis Period (min)			15									

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

	4	\rightarrow		1		4	4	\dagger	7	\checkmark	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Trafic Volume (vph)	111	124	21	18	156	67	50	344	13	59	157	132
Future Volume (vph)	111	124	21	18	156	67	50	344	13	59	157	132
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Hourly flow rate (vph)	132	148	25	21	186	80	60	410	15	70	187	157
Direction, Lane\#	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	305	287	485	414								
Volume Left (vph)	132	21	60	70								
Volume Right (vph)	25	80	15	157								
Hadj (s)	0.07	-0.12	0.02	-0.18								
Departure Headway (s)	8.6	8.5	8.1	7.9								
Degree Utilization, x	0.73	0.68	1.08	0.91								
Capacity (veh/h)	398	395	445	443								
Control Delay (s)	31.4	27.7	95.6	50.5								
Approach Delay (s)	31.4	27.7	95.6	50.5								
Approach LOS	D	D	F	F								
Intersection Summary												
Delay			56.9									
Level of Service			F									
Intersection Capacity Utilization			66.4\%		ICU Level	f Service			C			
Analysis Period (min)			15									

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

	4	\rightarrow	7	7	4	4	4	\dagger	p	($\frac{1}{\dagger}$	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\uparrow	「		\&		${ }^{7}$	F	
Traffic Volume (veh/h)	44	234	15	12	87	356	4	49	4	114	29	50
Future Volume (Veh/h)	44	234	15	12	87	356	4	49	4	114	29	50
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	49	263	17	13	98	400	4	55	4	128	33	56
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC , conflicting volume	498			280			566	894	272	525	502	98
vC 1 , stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	498			280			566	894	272	525	502	98
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.3
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.4
p0 queue free \%	95			99			99	79	99	66	93	94
cM capacity (veh/h)	1076			1294			373	267	772	375	448	947
Direction, Lane \#	EB 1	WB 1	WB 2	NB 1	SB 1	SB 2						
Volume Total	329	111	400	63	128	89						
Volume Left	49	13	0	4	128	0						
Volume Right	17	0	400	4	0	56						
cSH	1076	1294	1700	284	375	670						
Volume to Capacity	0.05	0.01	0.24	0.22	0.34	0.13						
Queue Length 95th (m)	1.1	0.2	0.0	6.3	11.3	3.5						
Control Delay (s)	1.7	1.0	0.0	21.2	19.5	11.2						
Lane LOS	A	A		C	C	B						
Approach Delay (s)	1.7	0.2		21.2	16.1							
Approach LOS				C	C							
Intersection Summary												
Average Delay			4.9									
Intersection Capacity Utilization			51.0\%		U Level	Service			A			
Analysis Period (min)			15									

JD Engineering	Synchro 9 Report
$04 / 28 / 2021$	

Appendix F Traffic Impact Study Excerpts

Everett Subdivision
Traffic Impact Study

Trip Distribution

Existing Counts		Morning Peak Hour		Afternoon Peak Hour	
From	On	Volume	$\%$	Volume	$\%$
North	CR13	80	24%	78	13%
West	CR 5	122	36%	90	15%
South	CR 13	63	19%	170	28%
	Conc 6	9	3%	39	6%
East	CR 5	65	19%	239	39%
Totals		339	100%	616	100%
To	On	Volume	$\%$	Volume	$\%$
North	CR13	58	15%	115	22%
West	CR 5	54	14%	153	30%
South	CR 13	84	22%	98	19%
	Conc 6	33	8%	16	3%
East	CR 5	161	41%	135	26%
Totals		390	100%	517	100%

Proposed Distribution			Morning PH		Afternoon PH
From	On				
North	CR13	20%	15%		
West	CR 5	35%	15%		
South	CR 13	20%	25%		
	Conc 6	5%	5%		
East	CR 5	20%	40%		
Totals		100%	100%		
To	On				
North	CR13	15%	20%		
West	CR 5	15%	30%		
South	CR 13	20%	20%		
	Conc 6	10%	5%		
East	CR 5	40%	25%		
Totals		100%	100%		

A nominal five percent reduction was applied to the overall trip generation estimates to account for the interaction between the various land uses.

The proposed parklands / open space and trail network are ancillary by nature and are expected to generate mainly walk and cycle trips internal to the development.

The overall trip generation was segregated into trips for each parcel, as presented in Table 3.
Table 3 - Site Trip Generation, by Future Development Land Area Parcel

4. TRIP DISTRIBUTION AND ASSSIGNMENT

Site trips were distributed and assigned to/from the parcels and the boundary roadways within the study area based on the following methodology:

Retail / Commercial Uses - are based on the existing traffic patterns within the study area, determined from a review of existing traffic counts, and also by the expected interaction between residential uses and retail / commercial uses.

Institutional Uses - are based on the anticipated catchment area for auto passenger drop-offs to/from the schools, originating from the residential areas within Everett.

Community Centre Uses - similar to the school trips, distribution and assignment is based on the anticipated catchment area within Everett where trips would be attracted to/from.

Residential Uses - are based on a review of 2006 Transportation Tomorrow Survey (TTS) data for trips to/from the Adjala-Tosorontio northern zone (TTS Zone 8553) and based on a review of existing travel

Transportation Engineering Consultants

200-1920 Yonge Street, Toronto, ON M4S 3E2, Canada Web: www.trans-plan.com Email: admin@trans-plan.com

Table 2 - Trip Distribution

Direction	On		From		To	
		AM Peak	PM Peak	AM Peak	PM Peak	
East	County Road 5	20%	40%	40%	25%	
West	County Road 5	35%	15%	15%	30%	
North	County Road 13	20%	15%	15%	20%	
South	County Road 13	20%	25%	20%	20%	
	Concession Road 6	5%	5%	10%	5%	
Total		100%	100%	100%	100%	

Site generated trips were assigned to the site access points based on the two scenarios discussed previously. For Scenario ' A ', it was assumed that Concession Road 6 remains unopened after the full build-out of the development. In this case, site traffic traveling to/from the south and to/from the east via County Road 5 would use Wales Avenue and Den Boer Road instead of Concession Road 6. The following trip assignment was assumed:

- 100% of the site traffic travelling to/from the west via County Road 5 , to/from the north and south via County Road 13 would utilize the main site access on County Road 13;
- 60% of the site traffic travelling tolfrom the east via County Road 5 and tolfrom the south via Concession Road 6 would access the site via Wales Avenue; and
- the rest of the 40% of the site traffic travelling to/from the east via County Road 5 and to/from the south via Concession Road 6 would access the site via Den Boer Road.

For Scenario ' B ', it is assumed that Concession Road 6 is extended to the north to provided access to the site. In this case, site traffic traveling to/from the south and to/from the east via County Road 5 would use Concession Road 6. The following trip assignment was assumed:

- 100% of the site traffic travelling to/from the west via County Road 5 , to/from the north and south via County Road 13 would utilized the main site access on County Road 13; and
- 100% of the site traffic travelling to/from the east via County Road 5 and to/from the south via Concession Road 6 would access the site via Concession Road 6.

While it is anticipated that some motorists may continue to access the development via Wales Avenue or Den Boer Road, these route will not be as direct as the alternatives and thus not otherwise favoured. As such, the associated volumes should be minimal.

The resulting site generated traffic volumes assigned to the road network based on the above are illustrated in Figures 7 and 8 for Scenarios 'A' and 'B' respectively.

6 FUTURE TOTAL TRAFFIC VOLUMES - WITH DEVELOPMENT

The site traffic volumes were combined with the future background volumes to yield the future total volumes, as illustrated in Figures 9 and 10 for Scenario 'A' and Figures 11 and 12 for Scenario 'B' respectively. These volumes consider expected growth in the area plus the additional traffic from the development site.

Appendix G Traffic Signal Warrant Sheets

Justification No. 7 - Total Traffic Volumes (Existing Intersection)
(2036) County Road 5 / County Road 13

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Rest. Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	720	554	77\%	64\%	NO	NO
	B. Vehicle volume, along minor streets (average hour)	170	353	207\%		YES	YES
2. Delay to cross traffic	A. Vehicle volume, major street (average hour)	720	167	23\%	19\%	NO	NO
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	75	165	220\%		YES	YES

Justification No. 7 - Total Traffic Volumes (Existing Intersection)

(2036) County Road 5 / Concession 6

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Free Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	480	477	99\%	83\%	NO	NO
	B. Vehicle volume, along minor streets (average hour)	120	169	141\%		YES	YES
2. Delay to cross traffic	A. Vehicle volume, major street (average hour)	480	193	40\%	34\%	NO	NO
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	137	273\%		YES	YES

Justification No. 7 - Total Traffic Volumes (Proposed Intersection)

(2036) County Road 13 / Street C

Justification	Description		Compliance			Signal Warrant	Underground Provisions Warrant
			Sectional		Entire \%		
		Free Flow	Numerical	\%			
1. Minimum Vehicluar Volume	A. Vehicle volume, all aproaches (average hour)	480	538	112\%	75\%	NO	YES
	B. Vehicle volume, along minor streets (average hour)	180	245	136\%		NO	YES
2. Delay to cross traffic	A. Vehicle volume, major street (average hour)	480	170	35\%	24\%	NO	NO
	B. Combined vehicle and pedestrian volume crossing artery from minor streets (average hour)	50	76	151\%		YES	YES

Appendix H MTO Left Turn Lane Warrant Nomographs

Figure EA-8

County Road 5 / County Road 13
Total 2036 - Westbound
PM Peak Hour

Figure EA-6

Figure EA-9

Total 2036 - Eastbound
PM Peak Hour

Figure EA-9

Figure EA-23

—————maffic signals may be warranteo in rural
--0-0-0-n.... TRAFFIC SIGNALS MAY BE WARRANTED IN
"free flow" urban areas

Figure EA-22

AREAS OR URBAN AREAS WITH RESTRICTED FLOW

"free flow" urban areas

Figure EA-6

EA-7

Figure EA-23

Figure EA-7

TRAFFIC SIG NALS MAY BE WARRANTED IN RURAL
AREAS OR UREAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN
"fREE FLOW" URBAN AREAS
County Road 13 / Street C
Total 2036 - Southbound

Figure EA-25

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL

TRAFFIC SIGNALS MAY BE WARRANTED IN
"fREE FLOW" URBAN AREAS
County Road 13 / Street C
Total 2036 - Southbound

Figure EA-25

Figure EA-17

[^0]: ${ }^{1}$ The exact timing for the conversion of the intersection to all-way stop will depend on the development schedule for the proposed development and the Barzo property. It is recommended that that County monitor the northbound and southbound control delay during the PM peak hour to identify when the improvement is warranted.

[^1]: ${ }^{2}$ For this analysis, a design speed of $60 \mathrm{~km} / \mathrm{h}$ was assumed for County Road 5 at County Road 13 and a design speed of $100 \mathrm{~km} / \mathrm{h}$ was assumed for County Road 5 at Concession Road 6.

[^2]: ${ }^{3}$ R \& M Homes Residential Development by Mark Engineering (2007) and Barzo Property Traffic Impact Study by C.C. Tatham \& Associates Ltd. (2007).

[^3]: ${ }^{4}$ The exact timing for the conversion of the intersection to all-way stop will depend on the development schedule for the proposed development and the Barzo property. It is recommended that that County monitor the northbound and southbound control delay during the PM peak hour to identify when the improvement is warranted.

[^4]: ${ }^{5}$ The exact timing for the conversion of the intersection to all-way stop will depend on the development schedule for the proposed development and the Barzo property. It is recommended that that County monitor the northbound and southbound control delay during the PM peak hour to identify when the improvement is warranted.

